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ABSTRACT We describe an assay for in vivo protein
interactions. Protein fusions containing ubiquitin, a 76-
residue, single-domain protein, are rapidly cleaved in vivo by
ubiquitin-specific proteases, which recognize the folded con-
formation of ubiquitin. When a C-terminal fragment of ubiq-
uitin (C,p) is expressed as a fusion to a reporter protein, the
fusion is cleaved only if an N-terminal fragment of ubiquitin
(Nup) is also expressed in the same cell. This reconstitution of
native ubiquitin from its fragments, detectable by the in vivo
cleavage assay, is not observed with a mutationally altered Ny,.
However, if C,, and the altered N,, are each linked to
polypeptides that interact in vivo, the cleavage of the fusion
containing C,,, is restored, yielding a generally applicable assay
for kinetic and equilibrium aspects of in vivo protein interac-
tions. This method, termed USPS (ubiquitin-based split-
protein sensor), makes it possible to monitor a protein—protein
interaction as a function of time, at the natural sites of this
interaction in a living cell.

Multiprotein complexes mediate the bulk of biological pro-
cesses (1, 2). The knowledge of these complexes is extensive
for oligomeric proteins whose subunit interactions are strong
enough to withstand in vitro conditions. However, many
oligomeric assemblies, while relevant physiologically, are
transient in vivo or unstable in vitro. The understanding of in
vivo protein interactions (and especially of their temporal
aspects) is still fragmentary and largely qualitative, the lim-
itations of existing in vivo methods being a major reason.
Assays for in vivo protein interactions include crosslinking of
proteins with cell-penetrating reagents (2) and use of reso-
nance energy transfer between dye-coupled proteins micro-
injected into cells (3). Genetic analyses of protein interactions
include searches for synthetic lethal or extragenic suppressor
mutations (4) which occur in genes whose products are at
least functionally (and often physically) associated with a
protein of interest. Another approach, the two-hybrid tech-
nique (5-8), is based on expressing one protein as a fusion to
a DNA-binding domain of a transcriptional activator and
expressing another protein as a fusion to a transcriptional
activation domain. If the test proteins interact in vivo, a
transcriptional activator is reconstituted, resulting in the
induction of a reporter gene. This otherwise powerful method
cannot address temporal aspects of a protein—protein inter-
action. In addition, the two-hybrid technique limits the set of
detectable protein interactions to those that occur (or can be
‘“‘reproduced’’) in the nucleus, in proximity to the reporter
gene (5-8).

We describe a ubiquitin (Ub)-based split-protein sensor
(USPS; Fig. 1) that makes it possible to examine kinetic and
equilibrium aspects of a protein—protein interaction at its
natural sites in a living cell.

MATERIALS AND METHODS

Strains, Media, Pulse-Chase, and Immunoblotting. All ex-
periments used the YPHS500 strain of the yeast Saccharomy-
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ces cerevisiae (MATa ura3 lys2 trpl ade2 his3 leu2) (11, 12)
grown at 30°C to an ODgg of =1 in a synthetic (SD) medium
(13, 14) containing 0.1 mM CuSOQ,. Pulse-chase experiments,
including the preparation of cell extracts in the presence of
N-ethylmaleimide (to inhibit UBPs), immunoprecipitation
with a monoclonal antibody to the ‘‘ha’’ epitope (14), SDS/
12% PAGE, and fluorography, were carried out as described
(11, 14), except that zero-time samples were withdrawn and
processed 1 min after the addition of a chase medium (11).
Immunoblotting with anti-ha antibody (11) was performed
with the ECL detection system (Amersham).

Test Proteins. Detailed protocols are available upon re-
quest. The final constructs [verified by sequencing (15)]
resided in plasmid pRS314 or pRS316 (12) and were ex-
pressed from the induced Pcyp; promoter. The S. cerevisiae
Ub gene was amplified by PCR (15) from the previously
engineered Sal I site immediately upstream of the Ub start
codon (11) to the first cytosine of codon 37, and from codon
35 to codon 76. The primers were constructed in a way that
yielded, after ligation of the two amplified fragments, a
BamHI site between codons 35 and 37 in the Ub open reading
frame (ORF). Ligation of this ORF to a fragment encoding
mouse dihydrofolate reductase with an ha epitope tag
(DHFR-ha, dha) (11) yielded an ORF encoding Ub-dha (Fig.
2, construct I), which contained the sequence Met-His-Arg-
Ser-Gly-Ile-Met between Gly-76 of Ub and Val-1 of DHFR.
Constructs II-IV (Fig. 2) were produced by replacing the Sal
I-BstXI fragment in construct I with appropriately designed
double-stranded oligonucleotides. Construct V (Fig. 2) was
produced by PCR using S. cerevisiae genomic DNA and
primers designed to amplify the region of STE6 (16, 17) from
codon 196 to codon 262. The resulting fragment was inserted
into the BamHI site between the Ub codons 35 and 37 in
constructs I-IV, yielding constructs V-VIII. In construct IX
(Fig. 2), residue 35 of Ub was preceded by a 32-residue linker
all of whose residues except the N-terminal Met-Gly-Gly
were specified by codons 234 to 262 of STE6. The z;-Cyp
portion of construct XIV encoded the above Ste6-derived
sequence preceding the C,, moiety, the leucine zipper region
of S. cerevisiae Gend (residues 235-281, denoted as z))
(18-21), the construction-generated N-terminal Met, and the
sequence Gly-Glu-Ile-Ser-Thr. Constructs X-XIII (Fig. 2),
derived from construct XIV and constructs V-VIII, encoded
Gly-Glu-Ile-Ser-Thr-Leu-Glu C-terminally to z;, with Gly-
Gly-Ser-Thr-Met between z; and Nyp. The z; motif in Nii-z;
and its derivatives but not in z; Cyp,-dha bore a Met-250 —
Thr-250 replacement (residue numbers of Gcnd), which oc-
curred during construction; this replacement would be ex-
pected to weaken the interaction between z; domains (18—
21).

RESULTS

In Vivo Folding of Ub Containing an Insertion and/or a
Single-Residue Replacement. Ub is a 76-residue, single-

Abbreviations: Ub, ubiquitin; USPS, Ub-based split-protein sensor;
UBP, Ub-specific protease; Nyp, N-terminal fragment of Ub; Cyp,
C-terminal fragment of Ub; DHFR, dihydrofolate reductase.
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Fic. 1. Split ubiquitin as a proximity sensor in vivo. (a) A ribbon diagram of Ub (9, 10), with its two subdomains colored pink and green

(as in b—e). Arrow denotes the site of either a 68-residue insertion or a cut between the subdomains. Some of the residue numbers are indicated.
Ile-13, the site of mutations analyzed in this work, is in the second strand of the B-sheet, where it interacts with the hydrophobic face of the
a-helix (9). (b) A newly formed Ub moiety bearing an insertion (wavy red line) between its N-terminal (Nyp; pink) and C-terminal (Cyb; green)
subdomains and linked to a reporter protein (Re; yellow). The insertion did not detectably interfere with the Ub folding, which was required
for the in vivo cleavage of the fusion by Ub-specific proteases (UBPs; red lightning arrow), yielding the free reporter. (c) When Ny and Cup
were coexpressed as separate fragments, with Cyp still linked to the reporter, significant in vivo reconstitution of a quasi-native (recognizable
by UBPs) Ub moiety was observed. (d) In vivo reconstitution of Ub from its separate, coexpressed fragments did not occur with a mutant Nyp
fragment, denoted as N, that bore a single-residue replacement at position 13. Conformational destabilization of Nif, relative to its wild-type
counterpart Ny is indicated by the altered shape of the N}, subdomain. (¢) USPS. N, an altered Ub fragment that failed to reconstitute Ub
in the presence of Cyp, did support reconstitution if the two Ub fragments were linked to polypeptides P; and P, (red and blue, respectively)
that interacted in vivo. Reduced conformational stability of Ub that has been reconstituted with NI}, instead of Ny is denoted by a gap between

the Ub subdomains.

domain protein (Fig. 1a) that is present in cells either free or
covalently linked to other proteins. Ub plays a role in a
number of processes, primarily through routes that involve
protein degradation (22-27). In eukaryotes, newly formed Ub
fusions are rapidly cleaved by UBPs after the last residue of
Ub at the Ub-polypeptide junction (13, 28-30). The cleavage
of a Ub fusion by UBPs requires the folded conformation of
Ub (11).

In the constructs of this work, Ub was joined to the N
terminus of mouse DHFR, whose C terminus was extended
with the ha epitope tag (14), yielding a Ub-dha test protein of
22 kDa. The Ub moiety whose Ile-3 and Ile-13 residues
[which are buried in the hydrophobic core of Ub (9)] have
been replaced by Gly is a poor UBP substrate (11). To make
similar but less destabilizing alterations of Ub, only Ile-13
was replaced with either Val, Ala, or Gly. The resulting Ub
fusions (Fig. 2, constructs II-IV) were completely cleaved in
vivo by the end of either a 5-min or a 2-min labeling with
[3SImethionine, as was Ub-dha, bearing wild-type Ub (Fig.

3A, lanes a—d, data not shown). We then asked whether a
68-residue insertion (i68) within a loop (residues 34-40)
connecting the only a-helix of Ub to a B-strand (Fig. 1 a and
b) and a substitution at position 13 of Ub, if present together,
result in a less efficient cleavage of a fusion by UBPs. The i68
insertion was derived from the cytosolic region of the S.
cerevisiae Ste6 protein between its transmembrane segments
4 and 5 (16, 17). This region was chosen because it was
expected to be either flexible or folded in a way that positions
its ends in proximity to each other. By the end of a 2-min
pulse, no uncleaved Ubi%®-dha, and at most traces of
UbV13.i68_dha, could be detected (Fig. 2, constructs V and VI;
3B, lanes a and b). However, the cleavage of UbA13:i68.dha
and especially UbG13:1%8.dha was much slower, in that signif-
icant amounts of the uncleaved fusions were observed by the
end of a 2-min pulse (Fig. 2, constructs VII and VIII; Fig. 3B,
lanes ¢ and d).

The i68 insertion places the two ‘‘halves’’ of a nascent Ub
farther apart (Fig. 1 a and b) and therefore is expected to
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FiG. 2. Fusion constructs. Fusions used in this work contained
some of the following elements: (i) a Ub moiety, either wild-type
(construct I) or bearing single-residue replacements at position 13
(constructs II-IV). (ij) A Ub moiety containing the 68-residue
insertion (denoted as Ste6) derived from the cytosolic region of S.
cerevisiae Ste6 between its transmembrane segments 4 and 5 (16, 17).
The insertion was positioned after residue 36 of Ub (construct V). (iii)
A Ub moiety bearing both the above insertion and a single-residue
replacement at position 13 (constructs VI-VIII). (iv) A C-terminal
fragment of Ub (Cyp, residues 35-76) bearing the 32-residue, Ste6-
derived sequence at its N terminus (construct IX). (v) The same
fusion whose N terminus was extended, via the linker sequence
Gly-Glu-Ile-Ser-Thr, with the 47-residue homodimerization motif
(““leucine zipper”’, or z;) of S. cerevisiae Gend (18-21) (residues
235-281 of Gen4) (construct XIV). (vi) An N-terminal fragment of Ub
(Nub, residues 1-37) bearing the wild-type Ub sequence or a single-
residue replacement at position 13 and a C-terminal extension
containing the linker sequence Gly-Gly-Ser-Thr-Met followed by the
73 leucine zipper of Gend (constructs X-XIII). (vii) Mouse DHFR
bearing a C-terminal ha epitope (14) (denoted as DHFR in this
diagram and as dha in the text and in Figs. 3 and 4).

Xiv | z,- c:',',-DHFR

retard the folding of Ub; this effect could be detected by the
2-min pulse—cleavage assay if another destabilizing Ub alter-
ation such as Ile-13 — Gly-13 (which by itself is insufficient
to cause a detectable retardation of Ub folding) was present
as well (Fig. 3 A and B). These results can be interpreted
within the diffusion—collision model of protein folding (2, 31,
32), in which marginally stable units of isolated secondary
structure form early and then coalesce into the native con-
formation. Indeed, in native Ub, its first 34 residues are
folded into an a-helix interacting with a double-stranded
antiparallel B-sheet (Fig. 1a) (9). Thus, the i68 insertion
retards Ub folding primarily through a reduction in the
frequency of collisions between the N-terminal and C-termi-
nal subdomains of Ub, whereas the effect of substitutions at
position 13 of Ub is a decreased conformational stability of its
N-terminal subdomain (Fig. 1a). This in vivo evidence for Ub
subdomains (see also below) is in agreement with the results
of circular dichroism and NMR analyses of Ub and its
fragments in a methanol/water solvent at low pH (33, 34).
In Vivo Reconstitution of Ub from Its Fragments. The
relative insensitivity of Ub folding to a large insertion within
the 34-40 loop (Fig. 1 a and b) suggested that separate,
coexpressed fragments of Ub (produced by a cut within the
34-40 loop) may be able to reconstitute native Ub. In a test
of this conjecture, a C-terminal fragment of wild-type Ub
(residues 35-76, denoted as Cyp) was expressed as a fusion to
the dha reporter (Cyp-dha), while an N-terminal fragment of
wild-type Ub (residues 1-37, denoted as N3) was expressed
as a fusion to the ‘‘leucine zipper’’ homodimerization domain
of the yeast Gend protein (denoted as z;) (Fig. 2, constructs
IX and X; refs. 18-21). (The reason for linking Nt to z; will
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FiG. 3. Kinetic and equilibrium aspects of ubiquitin reconstitu-
tion in vivo. (A) Lane a, S. cerevisiae cells expressing Ub-dha (Fig.
2, construct I) were labeled for 5 min with [33S]methionine, followed
by extraction of proteins, immunoprecipitation with anti-ha anti-
body, and SDS/PAGE. Lanes b—d, same as lane a but with the Ub
moiety containing, respectively, Val, Ala, or Gly instead of wild-type
Ile at position 13 (Fig. 2, constructs II-IV). (B) Lane a, same as lane
a in A but with a labeling time of 2 min and with S. cerevisiae
expressing Ubi%-dha (Fig. 2, construct V). Lanes b—d, same as lanes
b—d in A but with the single-residue replacements at position 13 in the
Ubi®8 moiety (constructs VI-VIII). (C) Lane a, same as lane a in B
but with S. cerevisiae expressing Cyp-dha (construct IX). Lane b,
Cup-dha was coexpressed with N§!%-z; (construct XIII). Lane c,
Cub-dha was coexpressed with N%l’-zl (construct XII). Lane d,

uw-dha was coexpressed with NY!3-z; (construct XI). Lane e,
Cub-dha was coexpressed with N3¢-z; (construct X). (D) Same as lane
ain C but with §. cerevisiae expressing z;Cyp-dha (construct XIV).
Lane b, z;Cyp-dha was coexpressed with N§!3-z;. Lane ¢, z;Cup-dha
was coexpressed with NA!*-z;. Lane d, z;Cyp-dha was coexpressed
with Ny>-z;. Lane e, z;Cybr-dha was coexpressed with N%t-z;. (E)
Whole-cell extracts of S. cerevisiae expressing Cyp-dha (lane a), or
Cub-dha and N§3-z; (lane b), or z;Cyp-dha and NG13-z; (lane c) were
fractionated by SDS/PAGE and analyzed by immunoblotting with
anti-ha antibody. (F) Same as E but with S. cerevisiae expressing
Cup-dha (lane a), or Cyp-dha and NA3-z; (lane b), or z;Cyp-dha and
NAB-z; (lane c). Ubi®8-dha, free reporter (dha), Cub-dha, and z;Cyb-
dha are indicated. The asterisk in B denotes an unrelated S. cerevi-
siae protein that crossreacted with anti-ha antibody (11, 14).

become clear later.) When expressed by itself, Cy-dha
remained largely uncleaved (Fig. 44, lanes a—c). However,
coexpression of C,,-dha and N¥{-z, resulted in the cleavage
of Cyp-dha, yielding dha, which accumulated during a 30-min
chase (Fig. 4A, lanes d-f). This cleavage was slow in com-
parison to the cleavage of a fusion containing wild-type Ub
(Fig. 3A, lane a). We conclude that the cleavage of Cyp-dha
requires the presence of Ny, and is the consequence of an in

" vivo association between the Cy, and Ny fragments. This

association results in at least transient formation of a Ub
moiety which is similar enough to native Ub to be a substrate
of UBPs. That fragments of a protein can associate to form
a functional, quasi-native species has been demonstrated
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Fi1c.4. Reconstitution of the folded ubiquitin from its coexpressed fragments: enhancement by cis-linked interacting polypeptides. (A) Lanes
a—c, S. cerevisiae cells expressing Cyp-dha (Fig. 2, construct IX) were subjected to incubation for 5 min with [3S]methionine, followed by a
chase for 0, 10, and 30 min, extraction of proteins, immunoprecipitation with anti-ha antibody, and SDS/PAGE. Note a slow degradation of
Cub-dha and the absence of the cleavage that yields dha. Lanes d-f, same as lanes a—c, but Cy,-dha was coexpressed with N3t-z; (construct
X). Lanes g-i, Cyb-dha was coexpressed with NYi3-z; (construct XI), which bore Val instead of wild-type Ile at position 13 of Ub. Lanes j-1,
Cub-dha was coexpressed with NA-z; (construct XII). Lanes m-o, Cyp-dha was coexpressed with N§!3-z; (construct XIII). (B) Lanes a—c, same
as lanes a—c in A but with z;Cyp-dha (construct XIV) instead of Cup-dha. Lanes d-f, z;Cyp-dha was coexpressed with NY¢-z;. Lanes g—i, z;Cyp-dha
was coexpressed with NYi?-z;. Lanes j-l, z;Cup-dha was coexpressed with N&u—zl. Lanes m-o, z;Cyb-dha was coexpressed with NG13-z;.

both in vitro and in vivo for a variety of proteins other than
Ub (35-41).

The efficiency of Ub reconstitution depended on the con-
formational stability of its N-terminal subdomain: coexpres-
sion of Cu-dha with either N§!*-z; or NA%-z, (Fig. 2,
constructs IX, XII, and XIII), bearing Gly or Ala instead of
Ile at position 13, resulted in virtually no cleavage of Cy,-dha,
in contrast to the results with either N%-z; or NY2*-z; (Fig.
2, constructs X and XI), which bore either wild-type Ile or
Val, a hydrophobic residue larger than Ala and Gly, at
position 13 (Fig. 1 ¢ and d and Fig. 44, lanes j—0; compare
with lanes d-i). These results, together with the discovery
that the UBP-mediated cleavage of a Ub fusion requires
folded Ub (11), led to development of an assay for in vivo
protein interactions, as shown below.

Split Ubiquitin as a Proximity Sensor. We asked whether
the linking of two polypeptides that interact in vivo to Ny, and
Cupb facilitates reconstitution of Ub. Cyp-dha was linked to a
region of S. cerevisiae Gend (residues 235-281) that con-
tained the leucine zipper homodimerization domain (denoted
as z;) (18-21). In the resulting z,Cy,-dha, a 32-residue linker
was inserted between z; and C,, (Fig. 2, construct XIV) to
ensure that Ny and Cyp subdomains could be spatially
proximal within a z;-mediated complex between z;C,,-dha
and Ny»-Z;. When expressed by itself, z;Cyp-dha remained
uncleaved and was slowly degraded during the chase (Fig.
4B, lanes a-c). However, coexpression of z;Cy,-dha and
NG13.z,, bearing Gly instead of Ile at position 13 of Ub,
resulted in a significant cleavage of z;Cyp-dha (yielding dha)
in the course of a 30-min chase (Fig. 2, constructs XIII and
XIV; Fig. 4B, lanes m—o0). By contrast, no such cleavage was
observed when NG13-z, was coexpressed with Cy,-dha, which
lacked z, (Fig. 44, lanes m—o). Similar results (but with faster
cleavage of z;Cy,-dha) were obtained upon coexpression of
z,Cuw-dha and NAB-z, (Fig. 4, lanes j-1). Moreover, the
enhancement of Ub reconstitution by z;-z; interactions was
observed even with pairs of Ub fragments that could yield Ub
by themselves (in the absence of linked z;). Speclﬁcally,
whereas the coexpression of Cyp-dha and N¥t-z; or NY3-z;
resulted in detectable but slow cleavage of Cy,-dha that was
still incomplete after 30 min of chase, coexpression of z;Cyp-

dha and N¥%-z; or N¥#3-z; resulted in the nearly complete
cleavage of z;Cy,-dha (yielding dha) by the end of a 5-min
pulse (Fig. 4, lanes d-i). The temporal resolution of this assay
could be increased by shortening the labeling time from § to
2 min. For example, the fraction of z;C,,-dha cleaved by the
end of a 2-min pulse progressively increased when z;Cy,-dha
was coexpressed with NG13-z;, NAB.z;, N¥3-z;, or N3t-z;
(Fig. 3D, lanes b—e). By contrast, no cleavage of z;Cyp-dha
was observed when it was expressed by itself (Fig. 3D, lane
a), or when N43-z; or NGB-zl were coexpressed with Cyp-
dha, which lacked the z, zipper (Fig. 3C, lanes b and c).
To determine steady-state levels of test proteins, cell
extracts were analyzed by immunoblotting with anti-ha an-
tibody (Fig. 3 E and F). When C,»,-dha was expressed by
itself, it remained largely uncleaved (Fig. 3 E and F, lanes a).
When N413-z; was coexpressed with Cyp-dha, a fraction of
Cup-dha was cleaved to yield dha (Fig. 3F, lane b). However,
when NA13-z, was coexpressed with z;Cy,-dha, virtually all of
z:Cup-dha was cleaved to yield dha (Fig. 3F, lane c). Similar
results were obtained with NG13-z;, except that a significant
fraction of z;Cyp-dha remained uncleaved in the presence of
NS13.z, (Fig. 3E, lanes b and c).

DISCUSSION

Selecting appropriate Ub fragments, altering one of them to
reduce the rate of Ub reconstitution by fragments alone, and
linking these fragments to a pair of test polypeptides yielded
USPS, an assay for kinetic and equilibrium aspects of in vivo
protein interactions., Features of USPS that distinguish it
from the two-hybrid téchnique (5-8) include the possibility of
monitoring a protein—protein interaction as a function of time,
at the natural sites of this interaction in a living cell. En-
hancement of Ub reconstitution by interacting polypeptides
linked to fragments of Ub stems from a local increase in
concentration of one Ub fragment in the vicinity of the other.
This increase results in a higher probability of the two Ub
fragments associating to form a quasi-native Ub moiety, an
event detected through the irreversible cleavage of the fusion
by UBPs (Fig. le).
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USPS detects a spatial proximity of proteins but not
necessarily their direct interaction. Therefore, a USPS signal
might also result from the binding of test proteins to a
common ligand—another protein or a larger structure such as
a microtubule or a ribosome. This feature of USPS should
allow in vivo analyses of large protein complexes, including
those that may be too unstable or too transient for detection
by other methods. A separate, immunologically detectable
reporter domain (Fig. 1) is not an essential feature of USPS:
the cleavage of a Cyp-containing fusion can also be followed
by measuring the enzymatic activity of a reporter protein that
is inactive until released from a Cy,-containing fusion or by
using an antibody specific for a test protein linked to either
the C terminus or the N terminus of C,. Listed below are
some of the USPS applications that remain to be explored.

(i) USPS can be used to analyze protein interactions in
vitro—in cell extracts or with purified fusions in the presence
of a purified UBP such as yeast Ubp1 (13), which can be added
at a desired time after the mixing of interacting species. The
kinetics of Ub reconstitution from its fragments in vitro can be
compared with analogous reconstitutions in living cells to
address the influences of translation, chaperonins, macromo-
lecular crowding, and other aspects of the irn vivo condition. In
vitro USPS can also be used to screen for peptide or nonpep-
tide ligands that interact with a ligand of interest.

(ii) Many proteins have more than one protein ligand. A
version of USPS for a ‘‘many-body’’ interaction could be as
follows. Nyy-P;, a fusion between Ny, and a protein of
interest, Py, is coexpressed with two other proteins: P,Cp-
R;, a fusion of Cyp, P, (a putative ligand of P;), and a reporter
Rj, and a similarly designed P;Cup-R; fusion containing a
different reporter, R,, and P;, another putative ligand of P;.
Comparing the kinetics of in vivo cleavage of P,Cyp-R; and
P3Cub-R; in the presence of Ny»-P; should provide informa-
tion about relative affinities of P, for P, and P; and about
kinetic aspects of these interactions as well.

(iii) Lateral diffusion and interactions of membrane pro-
teins underlie membrane-based reactions such as activation
of receptors by hormones and adhesion between cells. In this
version of USPS, the two Ub subdomains can be positioned
within cytosol-exposed regions of two membrane proteins.

(iv) A USPS-based screen for genes whose products in-
teract with a protein of interest P; can employ a reporter R
whose function is incompatible with an N-terminal extension
such as P,C,. The reporter would be activated upon Ub
reconstitution (Fig. le) and the cleavage of P;Cy,p-R that
yields R. In this approach, cells expressing P;Cy,-R are
transformed with an expression library encoding random
translational fusions to a mutant N, moiety and screened for
cells expressing active reporter.

USPS was demonstrated here with homodimerizing poly-
peptides of the leucine zipper type (Figs. 2 and 4). In addition,
we recently used USPS to detect and analyze in vivo inter-
actions between S. cerevisiae Sec62 protein and the signal
sequences of either the SUC2-encoded invertase or the
MFal-encoded precursor of a-factor, a mating pheromone.
Sec62 is an integral membrane protein and essential compo-
nent of the translocation complex which mediates the trans-
port of proteins bearing signal sequences across the endo-
plasmic reticulum membrane (42). The USPS assay detected
specific, transient interactions between Sec62 and the signal
sequences; it also made possible a kinetic analysis of these in
vivo interactions, which have previously been demonstrated
using photocrosslinking in a cell-free system (43). The tran-
sient proximity between a signal sequence and the mem-
brane-embedded Sec62 could be detected by using several
Nuw and Cyp, arrangements in Sec62 and signal sequence-
bearing test proteins. Together with the results of the present
work, these findings (unpublished data) illustrate the versa-
tility of USPS, its sensitivity to relatively weak and transient

Proc. Natl. Acad. Sci. USA 91 (1994)

protein interactions, and the remarkable flexibility of ‘‘al-
lowed”” Ny and Cyp configurations within test proteins.
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